Sains Malaysiana 54(7)(2025): 1813-1821
http://doi.org/10.17576/jsm-2025-5407-14
Resin-Mxene Composite for
Electromagnetic Shielding Applications
(Komposit Resin-Mxene untuk Aplikasi Perisai Elektromagnet)
AZKA REHMAN1, NUR AZREEN AZHAR1,
HUDA A MAJID2, HERDAWATIE ABDUL KADIR3 & FAHMIRUDDIN ESA1,*
1Department of Physics and Chemistry,
Faculty of Applied Sciences and Technology,
Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, KM
1, Jalan Panchor, 84600 Panchor, Johor, Malaysia
2Department of Electrical Engineering
Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn
Malaysia, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600 Panchor,
Johor, Malaysia
3Department of Electronic
Engineering, Faculty of Engineering, Universiti Tun Hussein Onn Malaysia, 86400
Parit Raja, Johor, Malaysia
Diserahkan: 17 Februari 2025/Diterima: 16
Mei 2025
Abstract
The growing demand for advanced
electromagnetic interference (EMI) shielding materials has driven the
development of lightweight high-performance solutions for modern electronics.
In this study, Mo2Ti2C3 MXene was synthesized via selective etching of the Mo2Ti2AlC3 MAX phase using hydrofluoric acid (HF) at concentrations of 6M and 9M. The
synthesized MXene was then incorporated into a resin matrix to fabricate
MXene-based composites with varying filler loadings of 1 wt.%, 3 wt.%, and 5
wt.% for EMI shielding applications. Fourier-transform infrared spectroscopy
(FTIR) confirmed that 9M HF etching resulted in higher surface
functionalization, with pronounced –OH, –O, and –F terminations, which enhanced
electrical conductivity. Field-emission scanning electron microscopy (FESEM) showed
a morphological transition from a compact MAX phase to a characteristic stacked
lamellar MXene structure, while energy-dispersive X-ray spectroscopy (EDX)
validated the complete removal of aluminum. X-ray diffraction (XRD) analysis
demonstrated that the incorporation of 3 wt.% MXene into the resin matrix
yielded the highest crystallinity, suggesting strong interfacial interactions. Reflection
coefficient (S11) measurements in the X-band (8.2–12.4 GHz) showed that a
higher MXene content enhanced wave reflection, improving EMI shielding. The 3
wt.% MXene composite achieved optimal performance by balancing reflection and
absorption, minimizing transmitted interference. These findings demonstrate
that the 9M HF-etched Mo2Ti2C3 MXene with 3
wt.% filler loading provides the best balance of electrical conductivity,
structural stability, and EMI shielding effectiveness, making it a promising
candidate for next-generation electronic and communication applications.
Keywords:
EMI shielding; HF etching; Mo2Ti2C3 MXene; reflection coefficient
Abstrak
Permintaan yang semakin meningkat
untuk bahan perisai gangguan elektromagnet termaju (EMI) telah mendorong
pembangunan penyelesaian berprestasi tinggi ringan untuk elektronik moden.
Dalam kajian ini, Mo2Ti2C3 MXene telah disintesis melalui punaran terpilih fasa MAX Mo2Ti2AlC3 menggunakan asid hidrofluorik (HF) pada kepekatan 6M dan 9M. MXene yang
disintesis kemudiannya digabungkan ke dalam matriks resin untuk menghasilkan
komposit berasaskan MXene dengan beban pengisi yang berbeza-beza 1 %bt., 3 %bt.
dan 5 %bt. untuk aplikasi pelindung EMI. Spektroskopi inframerah transformasi
Fourier (FTIR) mengesahkan bahawa punaran HF 9M menghasilkan kefungsian permukaan
yang lebih tinggi dengan penamatan –OH, –O dan –F yang disebut, yang
meningkatkan kekonduksian elektrik. Mikroskopi elektron pengimbasan pelepasan
medan (FESEM) mendedahkan peralihan morfologi daripada fasa MAX padat kepada
struktur bertindan ciri MXene lamelar, manakala spektroskopi sinar-X (EDX)
penyebaran tenaga mengesahkan penyingkiran lengkap aluminium. Analisis
pembelauan sinar-X (XRD) menunjukkan bahawa penggabungan 3 wt.% MXene ke dalam
matriks resin menghasilkan kehabluran tertinggi, mencadangkan interaksi antara
muka yang kuat. Pengukuran pekali pantulan (S11) dalam jalur X (8.2-12.4 GHz)
menunjukkan bahawa kandungan MXene yang lebih tinggi meningkatkan pantulan
gelombang, meningkatkan perisai EMI. Komposit MXene 3 wt.% mencapai prestasi
optimum dengan mengimbangi pantulan dan penyerapan, meminimumkan gangguan yang
dihantar. Penemuan ini menunjukkan bahawa MXene Mo2Ti2C3 MXene 9M HF dengan pemuatan pengisi 3 wt.% memberikan keseimbangan terbaik
kekonduksian elektrik, kestabilan struktur dan keberkesanan perisai EMI,
menjadikannya calon yang berpotensi untuk aplikasi elektronik dan komunikasi
generasi akan datang.
Kata kunci: Mo2Ti2C3 MXene; pekali pantulan; perisai EMI; punaran HF
RUJUKAN
Ahmaruzzaman, M.
2022. MXenes and MXene-supported nanocomposites: A novel materials for aqueous
environmental remediation. RSC Advances 12(53): 34766-34789.
Ali, I., Haider, Z. & Rizwan, S. 2022. Enhanced
pseudocapacitive energy storage and thermal stability of Sn 2+ ion-intercalated molybdenum titanium carbide (Mo2TiC2)
MXene. RSC Advances 12(49): 31923-31934.
Babar, Z.U.D.,
Fatheema, J., Arif, N., Anwar, M.S., Gul, S., Iqbal, M. & Rizwan, S. 2020.
Magnetic phase transition from paramagnetic in Nb2 AlC-MAX to
superconductivity-like diamagnetic in Nb2C-MXene: An experimental
and computational analysis. RSC Advances 10(43): 25669-25678.
Bibi, F., Numan,
A., Tan, Y.S. & Mohammad, K. 2024. Facile extraction of Mo2Ti2C3Tx
MXene via hydrothermal synthesis for electrochemical energy storage. Journal of Energy Storage 85: 111154.
Carey, M.S., Sokol,
M., Palmese, G.R. & Barsoum, M.W. 2019. Water transport and
thermomechanical properties of Ti3C2Tz MXene epoxy nanocomposites. ACS Applied
Materials & Interfaces 11(42):
39143-39149.
Chand, K., Zhang, X. &
Chen, Y. 2022. Recent progress in MXene and graphene based nanocomposites for
microwave absorption and electromagnetic interference shielding. Arabian Journal of Chemistry 15(10): 104143.
Chetana, S., Muhammad Amirul
Aizat Mohd Abdah, Thakur, V.N., Govinde Gowda, M.S., Choudhary, P., Sriramoju,
J.B., Rangappa, D., Malik, S., Rustagi, S. & Khalid, M. 2023. Progress and
prospects of MXene-based hybrid composites for next-generation energy
technology. Journal of the
Electrochemical Society 170(12):
120530.
Choi, H.K., Lee, D.S., Bae, S.,
Moon, B.J., Lee, S-K. & Kim, T-W. 2022. Recent progress of research into
conductive nanomaterials for use in electromagnetic interference shields. Applied Science and Convergence Technology 31(6): 120-127.
De Jesús Báez, L.R.,
Rosas, A.S., Mahale, P. & Mallouk, T.E. 2023. Chelation-based route to
aluminum-free layered transition metal carbides (MXenes). ACS Omega 8(44):
41969-41976.
Feng, W., Luo, H., Wang, Y.,
Zeng, S., Tan, Y., Deng, L., Zhou, X., Zhang, H. & Peng, S. 2019. Mxenes
derived laminated and magnetic composites with excellent microwave absorbing
performance. Scientific Reports 9: 3957.
Gandla, D., Zhang, F. &
Tan, D.Q. 2022. Advantage of larger interlayer spacing of a Mo2Ti2C3 MXene free-standing film electrode toward an excellent performance
supercapacitor in a binary ionic liquid–organic electrolyte. ACS Omega 7(8): 7190-7198.
Ghamsarizade, R.,
Ramezanzadeh, B. & Mohammadloo, H.E. 2023. A review on recent advances in
2D-transition metal carbonitride-MXenes nano-sheets/polymer composites'
electromagnetic shields, mechanical and thermal properties. Journal of the Taiwan Institute of Chemical
Engineers 144: 104740.
Gong, K., Zhou, K., Qian, X.,
Shi, C. & Yu, B. 2021. MXene as emerging nanofillers for high-performance
polymer composites: A review. Composites
Part B: Engineering 217: 108867.
Habibpour, S., Zarshenas, K.,
Zhang, M., Hamidinejad, M., Ma, L., Park, C.B. & Yu, A. 2022. Greatly enhanced
electromagnetic interference shielding effectiveness and mechanical properties
of polyaniline-grafted Ti3C2Tx MXene–PVDF composites. ACS Applied
Materials & Interfaces 14(18):
21521-21534.
Han, R., Li, W., Zhu, M. &
Li, F. 2015. An enhancement of reflection loss by controlling the reflected
electromagnetic wave at air–absorber interface. Applied Physics A 119: 201-204.
Han, X., Qiu, X., Zong, M.
& Hao, J. 2023. Assembled MXene macrostructures for multifunctional polymer
nanocomposites. Small Structures 4(10): 2300090.
Haq, Y-U., Ullah, R., Mazhar, S., Khattak, R., Ali Qarni, A.,
Haq, Z-U. & Amin, S. 2022. Synthesis and characterization of 2D MXene:
Device fabrication for humidity sensing. Journal
of Science: Advanced Materials and Devices 7(1): 100390.
Hu, Y., Xu, Z., Pu,
J., Hu, L., Zi, Y., Wang, M., Feng, X. & Huang, W. 2022. 2D MXene Ti3C2Tx nanosheets in the development of a mechanically enhanced and efficient
antibacterial dental resin composite. Frontiers
in Chemistry 10: 1090905.
Ikemoto, Y., Harada, Y.,
Tanaka, M., Nishimura, S-n., Murakami, D., Kurahashi, N., Moriwaki, T.,
Yamazoe, K., Washizu, H., Ishii, Y. & Torii, H. 2022. Infrared spectra and
hydrogen-bond configurations of water molecules at the interface of
water-insoluble polymers under humidified conditions. The Journal of Physical Chemistry B 126(22): 4143-4151.
Iqbal, A., Kwon, J., Kim, M-K.
& Koo, C.M. 2021. MXenes for electromagnetic interference shielding:
Experimental and theoretical perspectives. Materials
Today Advances 9: 100124.
Islam, M.Z., Fu, Y., Deb, H.,
Hasan, M.K., Dong, Y. & Shi, S. 2023. Polymer-based low dielectric constant
and loss materials for high-speed communication network: Dielectric constants
and challenges. European Polymer Journal 200: 112543.
James, J.P. & Choi, S.
2024. Securing signal integrity:
Innovative approaches to EMI reduction in converter systems. Paper presented at the 2024 7th
International Conference on Circuit Power and Computing Technologies (ICCPCT).
Jia, Z., Wang, C., Feng, A.,
Shi, P., Zhang, C., Liu, X., Wang, K. & Wu, G. 2020. A low-dielectric
decoration strategy to achieve absorption dominated electromagnetic shielding
material. Composites Part B: Engineering 183: 107690.
Karahan, B., Ozdemir, I.,
Grund, T., Hanisch, N. & Lampke, T. 2025. Advancements in cold spraying for
polymer matrix composites: Enhanced LSP and EMI shielding performance - review
and future directions. Journal of
Materials Science: Materials in Engineering 20: 13.
Khalid, Z., Hadi, F., Xie, J.,
Chandrabose, V. & Oh, J‐M. 2025. The future of MXenes: Exploring oxidative
degradation pathways and coping with surface/edge passivation approach. Small 21(6): 2407856.
Kim, S. & Byun, J. 2024.
Research trends in electromagnetic shielding using MXene-based composite materials. Journal of Powder Materials 31(1): 57-76.
Kumari, S., Dalal, J., Kumar,
V., Kumar, A. & Ohlan, A. 2023. Emerging two-dimensional materials for
electromagnetic interference shielding application. International Journal of Molecular Sciences 24(15): 12267.
Li, Y., Kankala, R.K., Chen,
A-Z. & Wang, S-B. 2022. 3D printing of ultrathin MXene toward tough and
thermally resistant nanocomposites. Nanomaterials 12(16): 2862.
Li, Z., Wang, L., Sun, D.,
Zhang, Y., Liu, B., Hu, Q. & Zhou, A. 2015. Synthesis and thermal stability
of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B 191: 33-40.
Ling, M., Ge, F., Wu, F.,
Zhang, L., Zhang, Q. & Zhang, B. 2024. Effect of crystal transformation on
the intrinsic defects and the microwave absorption performance of Mo2TiC2Tx/RGO
microspheres. Small 20(9): 2306233.
Lipatov, A., Alhabeb, M.,
Lukatskaya, M.R., Boson, A., Gogotsi, Y. & Sinitskii, A. 2016. Effect of
synthesis on quality, electronic properties and environmental stability of
individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials 2(12): 1600255.
Liu, W., Cao, J., Song, F.,
Zhang, D-D., Okhawilai, M., Yi, J, Qin, J-Q. & Zhang, X-Y. 2023. A double
transition metal Ti2NbC2Tx MXene for enhanced lithium-ion
storage. Rare Metals 42(1): 100-110.
Mendes, R.G., Ta, H.Q., Yang,
X., Li, W., Bachmatiuk, A., Choi, J‐H., Gemming, T., Anasori, B., Lijun,
L., Fu, L., Liu, Z. & Rümmeli, M.H. 2020. In situ N‐doped
graphene and Mo nanoribbon formation from Mo2Ti2C3 MXene monolayers. Small 16(5): 1907115.
Munir, S., Rasheed, A.,
Rasheed, T., Ayman, I., Ajmal, S., Rehman, A., Shakir, I., Agboola, P.O. &
Warsi, M.F. 2020. Exploring the influence of critical parameters for the
effective synthesis of high-quality 2D MXene. ACS Omega 5(41):
26845-26854.
Nasrin, K., Sudharshan, V.,
Subramani, K. & Sathish, M. 2022. Insights into 2D/2D MXene
heterostructures for improved synergy in structure toward next‐generation
supercapacitors: A review. Advanced
Functional Materials 32(18):
2110267.
Nguyen, Q-D. & Choi, C-G.
2024. Recent advances in multifunctional electromagnetic interference shielding
materials. Heliyon 10(10): e31118.
Opara, F.A., Obasi, H.C., Eke, B.C. & Eze, W.U. 2023.
Progress in polymer-based composites as efficient materials for electromagnetic
interference shielding applications: A review. Current Materials Science: Formerly: Recent Patents on Materials
Science 16(3): 235-261.
Osman, A.,
Elhakeem, A., Kaytbay, S. & Ahmed, A. 2022. A comprehensive review on the
thermal, electrical, and mechanical properties of graphene-based
multi-functional epoxy composites. Advanced
Composites and Hybrid Materials 5(2):
547-605.
Park, J., Lee, W. & Kim,
J. 2024. Large-scale construction and analysis of amorphous porous polymer
network materials. ACS Applied Materials
& Interfaces 16(42):
57190-57199.
Parker, T., Zhang, D.,
Bugallo, D., Shevchuk, K., Downes, M., Valurouthu, G., Inman, A., Chacon, B.,
Zhang, T., Shuck, C.E., Hu, Y-J. & Gogotsi, Y. 2024. Fourier-transform
infrared spectral library of MXenes. Chemistry
of Materials 36(17):
8437-8446.
Peng, M. & Qin, F. 2021.
Clarification of basic concepts for electromagnetic interference shielding
effectiveness. Journal of Applied Physics 130(22): 225108.
Protyai, M.I.H. & Rashid,
A.B. 2024. A comprehensive overview of recent progress in MXene-based polymer
composites: Their fabrication processes, advanced applications, and prospects. Heliyon 10(17): e37030.
Raagulan, K., Kim, B.M. &
Chai, K.Y. 2020. Recent advancement of electromagnetic interference (EMI)
shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4): 702.
Ramesh, M., Rajeshkumar, L.N.,
Srinivasan, N., Kumar, D.V. & Balaji, D. 2022. Influence of filler material
on properties of fiber-reinforced polymer composites: A review. e-Polymers 22(1): 898-916.
Tanvir, A., Sobolčiak, P.,
Popelka, A., Mrlik, M., Spitalsky, Z., Micusik, M., Prokes, J. & Krupa, I.
2019. Electrically conductive, transparent polymeric nanocomposites modified by
2D Ti3C2Tx (MXene). Polymers 11(8): 1272.
Tu, S., Qiu, L., Liu, C.,
Zeng, F., Yuan, Y-Y., Hedhili, M.N., Musteata, V., Ma, Y., Liang, K., Jiang, N., Alshareef, H.N. & Zhang, X.
2024. Suppressing dielectric loss in MXene/polymer nanocomposites through
interfacial interactions. ACS Nano 18(14): 10196-10205.
Ulas, B., Cetin, T., Topuz, M.
& Akinay, Y. 2024. Ti2NTx MXene materials derived from Ti2AlN
MAX phases: Their characterization and electrocatalytic activity toward
hydrazine electrooxidation. International
Journal of Hydrogen Energy 82: 892-900.
Umadevi, V. & Ranganathan,
S. 2024. Evaluating the impact of
radiated emissions from wireless devices on EMC in healthcare facilities. Paper presented at the 2024 15th
International Conference on Computing Communication and Networking Technologies
(ICCCNT).
Verma, S., Dwivedi, U.,
Chaturvedi, K., Kumari, N., Dhangar, M., Hashmi, S.A.R., Singhal, R. &
Srivastava, A.K. 2022. Progress of 2D MXenes based composites for efficient
electromagnetic interference shielding applications: A review. Synthetic Metals 287: 117095.
Wong, A.J.Y., Lim, K.R.G.
& Seh, Z.W. 2022. Fluoride-free synthesis and long-term stabilization of
MXenes. Journal of Materials Research 37(22): 3988-3997.
Yang, Q., Gao, Y., Li, T., Ma,
L., Qi, Q., Yang, T. & Meng, F. 2024. Advances in carbon fiber-based
electromagnetic shielding materials: Composition, structure, and application. Carbon 226: 119203.
Zhang, J., Zhang, J., Shuai, X.,
Zhao, R., Guo, T., Li, K., Wang, D., Ma, C., Li, J. & Du, J. 2021. Design
and synthesis strategies: 2D materials for electromagnetic shielding/absorbing. Chemistry – An Asian Journal 16(23): 3817-3832.
Zhang, Q., Wang, Q., Cui, J.,
Zhao, S., Zhang, G., Gao, A. & Yan, Y. 2023. Structural design and
preparation of Ti3C2Tx MXene/polymer
composites for absorption-dominated electromagnetic interference shielding. Nanoscale Advances 5(14): 3549-3574.
*Pengarang untuk surat-menyurat; email: fahmir@uthm.edu.my