Sains Malaysiana 54(7)(2025): 1813-1821

http://doi.org/10.17576/jsm-2025-5407-14

Resin-Mxene Composite for Electromagnetic Shielding Applications
(Komposit Resin-Mxene untuk Aplikasi Perisai Elektromagnet)

AZKA REHMAN1, NUR AZREEN AZHAR1, HUDA A MAJID2, HERDAWATIE ABDUL KADIR3 & FAHMIRUDDIN ESA1,*

1Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600 Panchor, Johor, Malaysia
2Department of Electrical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600 Panchor, Johor, Malaysia
3Department of Electronic Engineering, Faculty of Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia

Diserahkan: 17 Februari 2025/Diterima: 16 Mei 2025

Abstract

The growing demand for advanced electromagnetic interference (EMI) shielding materials has driven the development of lightweight high-performance solutions for modern electronics. In this study, Mo2Ti2C3 MXene was synthesized via selective etching of the Mo2Ti2AlC3 MAX phase using hydrofluoric acid (HF) at concentrations of 6M and 9M. The synthesized MXene was then incorporated into a resin matrix to fabricate MXene-based composites with varying filler loadings of 1 wt.%, 3 wt.%, and 5 wt.% for EMI shielding applications. Fourier-transform infrared spectroscopy (FTIR) confirmed that 9M HF etching resulted in higher surface functionalization, with pronounced –OH, –O, and –F terminations, which enhanced electrical conductivity. Field-emission scanning electron microscopy (FESEM) showed a morphological transition from a compact MAX phase to a characteristic stacked lamellar MXene structure, while energy-dispersive X-ray spectroscopy (EDX) validated the complete removal of aluminum. X-ray diffraction (XRD) analysis demonstrated that the incorporation of 3 wt.% MXene into the resin matrix yielded the highest crystallinity, suggesting strong interfacial interactions. Reflection coefficient (S11) measurements in the X-band (8.2–12.4 GHz) showed that a higher MXene content enhanced wave reflection, improving EMI shielding. The 3 wt.% MXene composite achieved optimal performance by balancing reflection and absorption, minimizing transmitted interference. These findings demonstrate that the 9M HF-etched Mo2Ti2C3 MXene with 3 wt.% filler loading provides the best balance of electrical conductivity, structural stability, and EMI shielding effectiveness, making it a promising candidate for next-generation electronic and communication applications.

Keywords: EMI shielding; HF etching; Mo2Ti2C3 MXene; reflection coefficient

 

Abstrak

Permintaan yang semakin meningkat untuk bahan perisai gangguan elektromagnet termaju (EMI) telah mendorong pembangunan penyelesaian berprestasi tinggi ringan untuk elektronik moden. Dalam kajian ini, Mo2Ti2C3 MXene telah disintesis melalui punaran terpilih fasa MAX Mo2Ti2AlC3 menggunakan asid hidrofluorik (HF) pada kepekatan 6M dan 9M. MXene yang disintesis kemudiannya digabungkan ke dalam matriks resin untuk menghasilkan komposit berasaskan MXene dengan beban pengisi yang berbeza-beza 1 %bt., 3 %bt. dan 5 %bt. untuk aplikasi pelindung EMI. Spektroskopi inframerah transformasi Fourier (FTIR) mengesahkan bahawa punaran HF 9M menghasilkan kefungsian permukaan yang lebih tinggi dengan penamatan –OH, –O dan –F yang disebut, yang meningkatkan kekonduksian elektrik. Mikroskopi elektron pengimbasan pelepasan medan (FESEM) mendedahkan peralihan morfologi daripada fasa MAX padat kepada struktur bertindan ciri MXene lamelar, manakala spektroskopi sinar-X (EDX) penyebaran tenaga mengesahkan penyingkiran lengkap aluminium. Analisis pembelauan sinar-X (XRD) menunjukkan bahawa penggabungan 3 wt.% MXene ke dalam matriks resin menghasilkan kehabluran tertinggi, mencadangkan interaksi antara muka yang kuat. Pengukuran pekali pantulan (S11) dalam jalur X (8.2-12.4 GHz) menunjukkan bahawa kandungan MXene yang lebih tinggi meningkatkan pantulan gelombang, meningkatkan perisai EMI. Komposit MXene 3 wt.% mencapai prestasi optimum dengan mengimbangi pantulan dan penyerapan, meminimumkan gangguan yang dihantar. Penemuan ini menunjukkan bahawa MXene Mo2Ti2C3 MXene 9M HF dengan pemuatan pengisi 3 wt.% memberikan keseimbangan terbaik kekonduksian elektrik, kestabilan struktur dan keberkesanan perisai EMI, menjadikannya calon yang berpotensi untuk aplikasi elektronik dan komunikasi generasi akan datang.

Kata kunci: Mo2Ti2C3 MXene; pekali pantulan; perisai EMI; punaran HF

 

RUJUKAN

Ahmaruzzaman, M. 2022. MXenes and MXene-supported nanocomposites: A novel materials for aqueous environmental remediation. RSC Advances 12(53): 34766-34789.

Ali, I., Haider, Z. & Rizwan, S. 2022. Enhanced pseudocapacitive energy storage and thermal stability of Sn 2+ ion-intercalated molybdenum titanium carbide (Mo2TiC2) MXene. RSC Advances 12(49): 31923-31934.

Babar, Z.U.D., Fatheema, J., Arif, N., Anwar, M.S., Gul, S., Iqbal, M. & Rizwan, S. 2020. Magnetic phase transition from paramagnetic in Nb2 AlC-MAX to superconductivity-like diamagnetic in Nb2C-MXene: An experimental and computational analysis. RSC Advances 10(43): 25669-25678.

Bibi, F., Numan, A., Tan, Y.S. & Mohammad, K. 2024. Facile extraction of Mo2Ti2C3Tx MXene via hydrothermal synthesis for electrochemical energy storage. Journal of Energy Storage 85: 111154.

Carey, M.S., Sokol, M., Palmese, G.R. & Barsoum, M.W. 2019. Water transport and thermomechanical properties of Ti3C2Tz MXene epoxy nanocomposites. ACS Applied Materials & Interfaces 11(42): 39143-39149.

Chand, K., Zhang, X. & Chen, Y. 2022. Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding. Arabian Journal of Chemistry 15(10): 104143.

Chetana, S., Muhammad Amirul Aizat Mohd Abdah, Thakur, V.N., Govinde Gowda, M.S., Choudhary, P., Sriramoju, J.B., Rangappa, D., Malik, S., Rustagi, S. & Khalid, M. 2023. Progress and prospects of MXene-based hybrid composites for next-generation energy technology. Journal of the Electrochemical Society 170(12): 120530.

Choi, H.K., Lee, D.S., Bae, S., Moon, B.J., Lee, S-K. & Kim, T-W. 2022. Recent progress of research into conductive nanomaterials for use in electromagnetic interference shields. Applied Science and Convergence Technology 31(6): 120-127.

De Jesús Báez, L.R., Rosas, A.S., Mahale, P. & Mallouk, T.E. 2023. Chelation-based route to aluminum-free layered transition metal carbides (MXenes). ACS Omega 8(44): 41969-41976.

Feng, W., Luo, H., Wang, Y., Zeng, S., Tan, Y., Deng, L., Zhou, X., Zhang, H. & Peng, S. 2019. Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Scientific Reports 9: 3957.

Gandla, D., Zhang, F. & Tan, D.Q. 2022. Advantage of larger interlayer spacing of a Mo2Ti2C3 MXene free-standing film electrode toward an excellent performance supercapacitor in a binary ionic liquid–organic electrolyte. ACS Omega 7(8): 7190-7198.

Ghamsarizade, R., Ramezanzadeh, B. & Mohammadloo, H.E. 2023. A review on recent advances in 2D-transition metal carbonitride-MXenes nano-sheets/polymer composites' electromagnetic shields, mechanical and thermal properties. Journal of the Taiwan Institute of Chemical Engineers 144: 104740.

Gong, K., Zhou, K., Qian, X., Shi, C. & Yu, B. 2021. MXene as emerging nanofillers for high-performance polymer composites: A review. Composites Part B: Engineering 217: 108867.

Habibpour, S., Zarshenas, K., Zhang, M., Hamidinejad, M., Ma, L., Park, C.B. & Yu, A. 2022. Greatly enhanced electromagnetic interference shielding effectiveness and mechanical properties of polyaniline-grafted Ti3C2Tx MXene–PVDF composites. ACS Applied Materials & Interfaces 14(18): 21521-21534.

Han, R., Li, W., Zhu, M. & Li, F. 2015. An enhancement of reflection loss by controlling the reflected electromagnetic wave at air–absorber interface. Applied Physics A 119: 201-204.

Han, X., Qiu, X., Zong, M. & Hao, J. 2023. Assembled MXene macrostructures for multifunctional polymer nanocomposites. Small Structures 4(10): 2300090.

Haq, Y-U., Ullah, R., Mazhar, S., Khattak, R., Ali Qarni, A., Haq, Z-U. & Amin, S. 2022. Synthesis and characterization of 2D MXene: Device fabrication for humidity sensing. Journal of Science: Advanced Materials and Devices 7(1): 100390.

Hu, Y., Xu, Z., Pu, J., Hu, L., Zi, Y., Wang, M., Feng, X. & Huang, W. 2022. 2D MXene Ti3C2Tx nanosheets in the development of a mechanically enhanced and efficient antibacterial dental resin composite. Frontiers in Chemistry 10: 1090905.

Ikemoto, Y., Harada, Y., Tanaka, M., Nishimura, S-n., Murakami, D., Kurahashi, N., Moriwaki, T., Yamazoe, K., Washizu, H., Ishii, Y. & Torii, H. 2022. Infrared spectra and hydrogen-bond configurations of water molecules at the interface of water-insoluble polymers under humidified conditions. The Journal of Physical Chemistry B 126(22): 4143-4151.

Iqbal, A., Kwon, J., Kim, M-K. & Koo, C.M. 2021. MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Materials Today Advances 9: 100124.

Islam, M.Z., Fu, Y., Deb, H., Hasan, M.K., Dong, Y. & Shi, S. 2023. Polymer-based low dielectric constant and loss materials for high-speed communication network: Dielectric constants and challenges. European Polymer Journal 200: 112543.

James, J.P. & Choi, S. 2024. Securing signal integrity: Innovative approaches to EMI reduction in converter systems. Paper presented at the 2024 7th International Conference on Circuit Power and Computing Technologies (ICCPCT).

Jia, Z., Wang, C., Feng, A., Shi, P., Zhang, C., Liu, X., Wang, K. & Wu, G. 2020. A low-dielectric decoration strategy to achieve absorption dominated electromagnetic shielding material. Composites Part B: Engineering 183: 107690.

Karahan, B., Ozdemir, I., Grund, T., Hanisch, N. & Lampke, T. 2025. Advancements in cold spraying for polymer matrix composites: Enhanced LSP and EMI shielding performance - review and future directions. Journal of Materials Science: Materials in Engineering 20: 13.

Khalid, Z., Hadi, F., Xie, J., Chandrabose, V. & Oh, J‐M. 2025. The future of MXenes: Exploring oxidative degradation pathways and coping with surface/edge passivation approach. Small 21(6): 2407856.

Kim, S. & Byun, J. 2024. Research trends in electromagnetic shielding using MXene-based composite materials. Journal of Powder Materials 31(1): 57-76.

Kumari, S., Dalal, J., Kumar, V., Kumar, A. & Ohlan, A. 2023. Emerging two-dimensional materials for electromagnetic interference shielding application. International Journal of Molecular Sciences 24(15): 12267.

Li, Y., Kankala, R.K., Chen, A-Z. & Wang, S-B. 2022. 3D printing of ultrathin MXene toward tough and thermally resistant nanocomposites. Nanomaterials 12(16): 2862.

Li, Z., Wang, L., Sun, D., Zhang, Y., Liu, B., Hu, Q. & Zhou, A. 2015. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B 191: 33-40.

Ling, M., Ge, F., Wu, F., Zhang, L., Zhang, Q. & Zhang, B. 2024. Effect of crystal transformation on the intrinsic defects and the microwave absorption performance of Mo2TiC2Tx/RGO microspheres. Small 20(9): 2306233.

Lipatov, A., Alhabeb, M., Lukatskaya, M.R., Boson, A., Gogotsi, Y. & Sinitskii, A. 2016. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials 2(12): 1600255.

Liu, W., Cao, J., Song, F., Zhang, D-D., Okhawilai, M., Yi, J, Qin, J-Q. & Zhang, X-Y. 2023. A double transition metal Ti2NbC2Tx MXene for enhanced lithium-ion storage. Rare Metals 42(1): 100-110.

Mendes, R.G., Ta, H.Q., Yang, X., Li, W., Bachmatiuk, A., Choi, J‐H., Gemming, T., Anasori, B., Lijun, L., Fu, L., Liu, Z. & Rümmeli, M.H. 2020. In situ N‐doped graphene and Mo nanoribbon formation from Mo2Ti2C3 MXene monolayers. Small 16(5): 1907115.

Munir, S., Rasheed, A., Rasheed, T., Ayman, I., Ajmal, S., Rehman, A., Shakir, I., Agboola, P.O. & Warsi, M.F. 2020. Exploring the influence of critical parameters for the effective synthesis of high-quality 2D MXene. ACS Omega 5(41): 26845-26854.

Nasrin, K., Sudharshan, V., Subramani, K. & Sathish, M. 2022. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next‐generation supercapacitors: A review. Advanced Functional Materials 32(18): 2110267.

Nguyen, Q-D. & Choi, C-G. 2024. Recent advances in multifunctional electromagnetic interference shielding materials. Heliyon 10(10): e31118.

Opara, F.A., Obasi, H.C., Eke, B.C. & Eze, W.U. 2023. Progress in polymer-based composites as efficient materials for electromagnetic interference shielding applications: A review. Current Materials Science: Formerly: Recent Patents on Materials Science 16(3): 235-261.

Osman, A., Elhakeem, A., Kaytbay, S. & Ahmed, A. 2022. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Advanced Composites and Hybrid Materials 5(2): 547-605.

Park, J., Lee, W. & Kim, J. 2024. Large-scale construction and analysis of amorphous porous polymer network materials. ACS Applied Materials & Interfaces 16(42): 57190-57199.

Parker, T., Zhang, D., Bugallo, D., Shevchuk, K., Downes, M., Valurouthu, G., Inman, A., Chacon, B., Zhang, T., Shuck, C.E., Hu, Y-J. & Gogotsi, Y. 2024. Fourier-transform infrared spectral library of MXenes. Chemistry of Materials 36(17): 8437-8446.

Peng, M. & Qin, F. 2021. Clarification of basic concepts for electromagnetic interference shielding effectiveness. Journal of Applied Physics 130(22): 225108.

Protyai, M.I.H. & Rashid, A.B. 2024. A comprehensive overview of recent progress in MXene-based polymer composites: Their fabrication processes, advanced applications, and prospects. Heliyon 10(17): e37030.

Raagulan, K., Kim, B.M. & Chai, K.Y. 2020. Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4): 702.

Ramesh, M., Rajeshkumar, L.N., Srinivasan, N., Kumar, D.V. & Balaji, D. 2022. Influence of filler material on properties of fiber-reinforced polymer composites: A review. e-Polymers 22(1): 898-916.

Tanvir, A., Sobolčiak, P., Popelka, A., Mrlik, M., Spitalsky, Z., Micusik, M., Prokes, J. & Krupa, I. 2019. Electrically conductive, transparent polymeric nanocomposites modified by 2D Ti3C2Tx (MXene). Polymers 11(8): 1272.

Tu, S., Qiu, L., Liu, C., Zeng, F., Yuan, Y-Y., Hedhili, M.N., Musteata, V., Ma, Y., Liang, K.,  Jiang, N., Alshareef, H.N. & Zhang, X. 2024. Suppressing dielectric loss in MXene/polymer nanocomposites through interfacial interactions. ACS Nano 18(14): 10196-10205.

Ulas, B., Cetin, T., Topuz, M. & Akinay, Y. 2024. Ti2NTx MXene materials derived from Ti2AlN MAX phases: Their characterization and electrocatalytic activity toward hydrazine electrooxidation. International Journal of Hydrogen Energy 82: 892-900.

Umadevi, V. & Ranganathan, S. 2024. Evaluating the impact of radiated emissions from wireless devices on EMC in healthcare facilities. Paper presented at the 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT).

Verma, S., Dwivedi, U., Chaturvedi, K., Kumari, N., Dhangar, M., Hashmi, S.A.R., Singhal, R. & Srivastava, A.K. 2022. Progress of 2D MXenes based composites for efficient electromagnetic interference shielding applications: A review. Synthetic Metals 287: 117095.

Wong, A.J.Y., Lim, K.R.G. & Seh, Z.W. 2022. Fluoride-free synthesis and long-term stabilization of MXenes. Journal of Materials Research 37(22): 3988-3997.

Yang, Q., Gao, Y., Li, T., Ma, L., Qi, Q., Yang, T. & Meng, F. 2024. Advances in carbon fiber-based electromagnetic shielding materials: Composition, structure, and application. Carbon 226: 119203.

Zhang, J., Zhang, J., Shuai, X., Zhao, R., Guo, T., Li, K., Wang, D., Ma, C., Li, J. & Du, J. 2021. Design and synthesis strategies: 2D materials for electromagnetic shielding/absorbing. Chemistry – An Asian Journal 16(23): 3817-3832.

Zhang, Q., Wang, Q., Cui, J., Zhao, S., Zhang, G., Gao, A. & Yan, Y. 2023. Structural design and preparation of Ti3C2Tx MXene/polymer composites for absorption-dominated electromagnetic interference shielding. Nanoscale Advances 5(14): 3549-3574.

 

*Pengarang untuk surat-menyurat; email: fahmir@uthm.edu.my

 

 

 

 

 

 

 

 

           

sebelumnya